首页  >  师资队伍  >  正文
师资队伍

杜廷松个人简介

作者:    时间:2022-06-19    浏览:

一、 简介

杜廷松:男,1969年9月生, 湖北利川人,中共党员,教授,硕士生导师。美国数学会《Mathematical Reviews》评论员(Reviewer number:133867),教育部硕士学位论文评议专家。湖北省计算数学学会常务理事,第五届三峡大学理学院学术委员会副主任委员(2019-)。1991年7月毕业于武汉大学数学系应用数学专业, 获理学学士学位。1998年9月—2001年7月武汉大学数学与计算机科学学院攻读计算数学专业“最优化理论与算法”方向的硕士学位, 获理学硕士学位。1991—至今在三峡大学理学院从事教学科研工作30年,已在《Fuzzy Sets and Systems》,《Fractals-Complex Geometry, Patterns, and Scaling in Nature and Society》,《Chaos, Solitons and Fractals》,《Applied Mathematics and Computation》,《Applied Mathematical Modelling》,《Applicable Analysis》,《Communications in Mathematics and Statistics》,《Chinese Quarterly Journal of Mathematics》,《系统工程》,《应用数学》,《纯粹数学与应用数学》,《数学杂志》,《武汉大学学报》等国内外重要学术期刊上以第一作者或通讯作者公开发表学术论文50余篇,其中30余篇被SCI、EI、《美国数学评论》》、《中国数学文摘》等中外重要检索刊物收录或评论。至2021年为止已培养毕业硕士研究生9人,其中2人荣获研究生国家奖学金,2人毕业后考入重点大学继续攻读博士学位研究生,3人荣获三峡大学优秀硕士学位论文奖。


二、教学

1主讲课程

本科生课程:高等数学;数值分析。

研究生课程:凸分析;最优化理论与方法;数值分析。

2 教研项目

主持:三峡大学“工程硕士研究生数值分析课程建设”(2012)。

主持:教研项目“三峡大学数值分析精品课程”(20011-2014)。

主持:“基于Matlab面向应用的工科数值分析教学研究与实践”,荣获三峡大学教学成果二等奖 (2008)。

参与:“数学学科复合型人才培养模式改革研究与实践”,荣获三峡大学教学成果一等奖(2012)。

3 主编教材

(1) 杜廷松, 覃太贵主编. 数值分析及实验(第二版). 北京:科学出版社, 2012, 10.

(2) 杜廷松, 沈艳军, 覃太贵主编. 数值分析及实验(第一版). 北京:科学出版社, 2006, 02.


三、科研

1、研究方向

分数阶分析不等式;广义凸分析;数值计算;最优化理论与算法。

2、科研项目

(1) 主持:“分布式能源系统优化数学模型的群智能算法求解研究”,冶金工业过程系统科学湖北省重点实验室开放基金项目(Z201402),2014/01-2015/12,3万元。

(2) 主持:“非凸非线性全局优化问题的确定性算法研究”, 三峡大学青年科学基金项目(KJA0222),2002/07-2004/07,0.5万元。该项目荣获三峡大学科学技术三等奖(2005)。

(3) 参与:“线性规划与非线性规划内点算法”,该项目荣获三峡大学科学技术二等奖(2004)。

(4) 参与国家自然科学青年基金项目一项;湖北省教育厅重点项目二项。

3、科研论文:(*号为通信作者)

[1] Tingsong Du* (杜廷松), Taichun Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos, Solitons and Fractals, 2022, 156: 1–19. (SCI)

[2]  Yu Peng, Hao Fu, Tingsong Du* (杜廷松), Estimations of bounds on the multiplicative fractional integral inequalities having exponential kernels, Communications in Mathematics and Statistics, 2022, Accepted and in press, https://doi.org/10.1007/s40304-022-00285-8 (SCI)

[3] Tingsong Du* (杜廷松), Chunyan Luo, Zhijie Cao, On the Bullen-type inequalities via generalized fractional integrals and their applications, Fractals-Complex Geometry, Patterns, and Scaling in Nature and Society, 2021, 29 (7): 1–20. (SCI)

[4] Tingsong Du* (杜廷松), Muhammad Uzair Awan, Artion Kashuri, Shasha Zhao, Some  -fractional extensions of the trapezium inequalities through generalized relative semi--preinvexity, Applicable Analysis, 2021, 100 (3): 642–662. (SCI)

[5]  Tingsong Du* (杜廷松), Chunyan Luo,  Bo Yu, Certain quantum estimates on the parameterized integral inequalities and their applications, Journal of Mathematical Inequalities, 2021, 15 (1): 201–228. (SCI)

[6]  Chunyan Luo, Yuping Yu, Tingsong Du*(杜廷松),  An improvement of Hölder integral inequality on fractal sets and some related Simpson-like inequalities, Fractals-Complex Geometry, Patterns, and Scaling in Nature and Society, 2021, 29 (5): 1–20. (SCI), (第一作者为研究生)


[7] Zhengrong Yuan, Taichun Zhou, Qiang Zhang, Tingsong Du∗ (杜廷松), Certain parameterized inequalities arising from fractional integral operators with exponential kernels, Filomat, 2021, 35 (5): 1707–1724. (SCI) , (第一作者为研究生)

[8]  Jiagen Liao, Shanhe Wu, Tingsong Du* (杜廷松), The Sugeno integral with respect to -preinvex functions, Fuzzy Sets and Systems, 2020, 379: 102–114.  (SCI) , (第一作者为研究生)

[9]  Chunyan Luo, Hao Wang, Tingsong Du*(杜廷松), Fejér–Hermite–Hadamard type inequalities involving generalized -convexity on fractal sets and their applications, Chaos, Solitons and Fractals, 2020, 131:1–13. (SCI) , (第一作者为研究生)

[10] Tingsong Du*(杜廷松),  Chunyan Luo, Zhengzheng Huang, Artion Kashuri, Fractional trapezium-like inequalities involving generalized relative semi--preinvex mappings on an -invex set, Ukrainian Mathematical Journal, 2020, 72 (12): 1886–1906. (SCI)

[11] Gou Hu, Tingsong Du*(杜廷松), Fuxiang Liu, Certain new integral inequalities considering the generalized logarithmically –preinvexity, Maejo International Journal of Science and Technology, 2020, 14 (1), 93–108. (SCI)

[12] Chunyan Luo, Tingsong Du*(杜廷松), Generalized Simpson type inequalities involving Riemann–Liouville fractional integrals and their applications, Filomat, 2020, 34 (3) : 751–760. (SCI) , (第一作者为研究生)

[13] Hui Lei, Gou Hu, Jialu Nie, and Tingsong Du*(杜廷松),  Generalized Simpson-type inequalities considering first derivatives through the -fractional integrals,  IAENG International Journal of Applied Mathematics, 2020, 50 (3): 628-635. (EI), (第一作者为研究生)

[14] Tingsong Du* (杜廷松),  Hao Wang,  Muhammad Adil Khan, Yao Zhang, Certain integral inequalities considering generalized -convexity on fractal sets and their applications, Fractals-Complex Geometry, Patterns, and Scaling in Nature and Society, 2019, 27 (7): 1–17. (SCI)

[15] Tingsong Du* (杜廷松),  Hao Wang,  Muhammad Amer Latif, Yao Zhang, Estimation type results associated to -fractional integral inequalities with applications, Journal of King Saud University Science, 2019, 31 (4) : 1083–1088. (SCI)

[16] Hui Lei, Tingsong Du*(杜廷松), Some new bounds related to Fejér–Hermite–Hadamard type inequality and their applications, ScienceAsia, 2019, 45 (4): 361–370. (SCI) , (第一作者为研究生)

[17] Chunyan Luo, Tingsong Du* (杜廷松), Muhammad Uzair Awan, Marcela V. Mihai, On the k-fractional integral inequalities through the generalized -preinvexity, Journal of Nonlinear Functional Analysis, 2019 (2019), Article ID 2, pp. 1–18. (EI), (第一作者为研究生)

[18] Tingsong Du* (杜廷松), Xianting Ke,  Jiagen Liao, Yanjun Shen, DSLC-FOA : Improved fruit fly optimization algorithm for application to structural engineering design optimization problems, Applied Mathematical Modelling, 2018, 55:314–339. (SCI)

[19] Yao Zhang, Tingsong Du* (杜廷松), Hao Wang, Some new -fractional integral inequalities containing multiple parameters via generalized -preinvexity,Italian Journal of Pure and Applied Mathematics, 2018, 40: 510–527. (EI), (第一作者为研究生)

[20] Tingsong Du* (杜廷松), Yujiao Li, Zhiqiao Yang, A generalization of Simpson’s inequality via differentiable mapping using extended -convex functions, Applied Mathematics and Computation, 2017, 293: 358–369. (SCI)

[21] Jiagen Liao, Tingsong Du*(杜廷松), Optimality conditions in sub- -convex programming, University Politehnica of Bucharest Scientific Bulletin, Series A: Applied Mathematics and Physics, 2017, 79(2):95–106. (SCI) , (第一作者为研究生)

[22] Jiagen Liao, Tingsong Du*(杜廷松), Certain properties associated with B-preinvex fuzzy mappings,Italian Journal of Pure and Applied Mathematics, 2017, 38: 204–217. (EI), (第一作者为研究生)

[23] Yichao Zhang, Tingsong Du*(杜廷松), Jiao Pan, On new inequalities of Fej´er-Hermite-Hadamard type for differentiable -preinvex mappings, ScienceAsia, 2017, 43 (4 ): 258–266. (SCI)

[24] Jiagen Liao, Tingsong Du*(杜廷松), On some characterizations of sub---convex functions, Filomat,2016, 30 (14): 3885–3895. (SCI) , (第一作者为研究生)

[25] Yujiao Li, Tingsong Du (杜廷松), Bo Yu, Some new integral inequalities of Hadamard-Simpson type for extended -preinvex functions, Italian Journal of Pure and Applied Mathematics, 2016, 36, 583–600. (EI), (第一作者为研究生)



办公地点:三峡大学理科楼L-1330

电子邮箱:tingsongdu@ctgu.edu.cn


Copyright © 2007 - 2016 . All Rights Reserved 三峡大学理学院    地址:湖北省宜昌市大学路     电话:0717-6392370