首页  >  师资队伍  >  正文
师资队伍

向长林个人简介

作者:    时间:2022-06-10    浏览:



  • 姓名:向长林

  • 职称:教授

  • 毕业院校: 于韦斯屈莱大学(芬兰)

  • 学历: 博士研究生

  • 学位: 博士

  • 所在单位:理学院,三峡数学研究中心

  • 学科: 数学

  • 办公地点: L1648

  • 联系方式:07176392642

  • 电子邮箱:changlin.xiang@ctgu.edu.cn

    (附注:常年欢迎优秀本科生报考本人的硕士,需提供完整成绩单和四级过线证明,发送至上述邮箱。谢谢!)

     

  • 个人简介:

        我主讲过如下课程:本科课程包括《数学分析》《数学物理方程》《泛函分析》等;硕士课程包括《实分析》《泛函分析》《现代偏微分方程入门》《二阶椭圆方程正则性理论》《变分法》等。

    我的研究方向是椭圆型偏微分方程与变分法。目前培养了4名研究生,其中2名毕业,2名在读。

  • 主持/参与的科研项目:

    1Riviere型方程组正则性理论及其几何应用(编号:12271296),国家自然科学基金面上项目,2023.012026.12,主持。(在研)

    2Kirchhoff方程奇异摄动问题的研究(编号:11701045),国家自然科学基金青年项目,2018.012020.12,主持。(已结题)

     

  • 学术论文:

  1. Lp-regularity for fourth order elliptic systems with antisymmetric potentials in higher dimensions. Calc. Var. Partial Differential Equations, 62:31, 2023. (with Chang-Yu Guo and Changyou Wang)

  2. Lp-regularity theory for even order elliptic systems with antisymmetric first order potentials. J. Math. Pures Appl. 165 (2022), 286-324. (with Chang-Yu Guo and Gao-Feng Zheng)

  3. The Lamm-Rivière system I: Lp-regularity theory. Calc. Var. Partial Differential Equations 60 (2021), no. 6, Paper No. 213, 32 pp. (with Chang-Yu Guo and Gao-Feng Zheng)

  4. Regularity of weak solutions to higher order elliptic systems in critical dimensions. Trans. Amer. Math .Soc. 374(5) (2021), 3579-3602. (with Chang-Yu Guo)

  5. Regularity of solutions for a fourth-order elliptic system via conservation law. J. London Math. Soc. 101(2) (2020), 907-922. (with Chang-Yu Guo)

  6. A singularly perturbed Kirchhoff problem revisited. J. Differential Equations 268 (2020), no. 2, 541-589. (with Gongbao Li, Peng Luo, Shuangjie Peng, Chunhua Wang)

  7. Nonlinear Liouville problems in a quarter plane. Int. Math. Res. Not. IMRN 2017, 2207-2218.

  8. Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions. Calc. Val. Partial Differential Equations 55 (2016), 55:134.

  9. Asymptotic behaviors of solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential. J. Differential Equations 259 (2015), 3929-3954.


Copyright © 2007 - 2016 . All Rights Reserved 三峡大学理学院    地址:湖北省宜昌市大学路     电话:0717-6392370