讲座报告
讲座报告
当前位置:

【数理讲坛】 The full viscous quantum hydrodynamic system in one dimensional space

作者:     发布时间:2024年10月18日 09:58     浏览:
报告人:孙文龙 副教授
时 间:2024-10-24 14:30:00
地 点:理科楼L2620
报告摘要:A viscous quantum hydrodynamic system for particle density, current density, energy density and electrostatic potential, coupled with a Poisson equation, is studied in spatial one dimensional real line. The system is self-consistent in the sense that the electric field, which forms a forcing term in the momentum and energy equations, is determined by the coupled Poisson equation. First the existence and uniqueness of the stationary solution is proved in an appropriate Sobolev space. Then exponential stability of the stationary solution is established by constructing an apriori estimate. Since the techniques for classical hydrodynamic equations are not applicable here due to the quantum term, the existence of a local-in-time solution is obtained by showing the existence of local-in-time solutions of a reformulated system via the iteration method.

报告人简介:孙文龙,博士,长江大学副教授,研究方向为无穷维动力系统与偏微分方程,发表学术论文十余篇。主持国家自然科学基金青年项目、湖北省自然科学基金青年项目和湖北省教育厅中青年人才项目各一项,参与多项国家自然科学基金面上项目和青年项目。


上一条:【数理讲坛】From fractional Allen-Cahn equation to nonlocal minimal surfaces

下一条:【数理讲坛】 Lp boundedness of wave operators for high-order Schrödinger operators on the line