师资队伍
师资简介
当前位置:
    首页  /  师资队伍  /  师资简介  /  数学与应用数学系  /  正文
江明辉
  • 职称:教授
  • 学历:研究生
  • 毕业院校:华中科技大学
  • 所在单位:理学院
  • 学位:博士
  • 学科:数学
  • 电话:
  • 地址:L1606
  • 邮箱:jiangminghui@ctgu.edu.cn
个人简介

    江明辉(1968.3.26),教授。1990年,华中师范大学数学系毕业,获理学学士;同年分配到宜昌师范高等专科学校数学科工作;19949月到湖南大学应用数学系读硕,19977月获理学硕士学位;同年回到湖北三峡学院数学系工作;20033月考入华中科技大学系统工程研究所读博士,200512月获理学博士学位;同年回到三峡大学数学系工作。

开设课程
《高等代数》、《线性代数》及研究生《非线性系统分析》
主持/参与的科研项目
主要参与过三项国家自然科学基金项目;
          
学术论文
[1] Finite-time synchronization of drive-response systems via periodically intermittent adaptive control; Journal of the Franklin Institute, (2014) 351:2691–2710

[2] Exponential p-Synchronization of Non-autonomous Cohen–Grossberg Neural Networks with Reaction-Diffusion Terms via Periodically Intermittent Control,Neural Process Letters (2014) 40:103–126

[3] Finite-time synchronization control of a class of memristor-based recurrent neural networks, Neural Networks, (2015) 63 :133-140

[4] New results on exponential synchronization of memristor-based chaotic neural networks, Neurocomputing, (2015) 156 :60-67

[5] Globally exponential stability and dissipativity for nonautonomous neural networks with mixed time-varying delays, Neurocomputing 2016,205:421-429

[6] Finite-time synchronization of inertial memristive neural networks with time-varying delays via sampled-date control, Neurocomputing 266 (2017) 527–539

[7] Stability analysis of memristor-based time-delay fractional-order neural networks, Neurocomputing 323 (2019) 117–127

[8] Dissipativity Analysis of Memristor-Based Fractional-Order Hybrid BAM Neural Networks with Time Delays, International Journal of Nonlinear Sciences and Numerical Simulation, 2019; 20(7-8): 773–785

[9] Quasi fixed-time synchronization of memristive Cohen-Grossberg neuralnetworks with reaction-diffusion,Neurocomputing 415 (2020) 74–83;

[10] Synchronization with general decay rate for memristor-based BAM neural networks with distributed delays and discontinuous activation functions,Neurocomputing 387 (2020) 221–240.

[11] New finite-time synchronization of memristive Cohen–Grossberg neural network with reaction–diffusion term based on time-varying delay,Neural Computing and Applications (2021) 33:4315–4328;

[12] Global dissipativity and finite-time synchronization of mixed time-varying delayed memristor-based neural networks with discontinuous activations, Journal of Intelligent & Fuzzy Systems, 40 (2021) 1695–1712