师资简介
当前位置:
-
首页
/
师资队伍
/
师资简介
/
数学与应用数学系
/
正文
杜廷松
职称:教授
学历:研究生
毕业院校:武汉大学
所在单位:理学院
学位:硕士
学科:
电话:
地址:L1330
邮箱:tingsongdu@ctgu.edu.cn
开设课程
本科生课程:高等数学;数值分析。 研究生课程:凸分析;最优化理论与方法;数值分析。
主持/参与的科研项目
(1) 主持:“分布式能源系统优化数学模型的群智能算法求解研究”,冶金工业过程系统科学湖北省重点实验室开放基金项目(Z201402),2014/01-2015/12,3万元。
(2) 主持:“非凸非线性全局优化问题的确定性算法研究”, 三峡大学青年科学基金项目(KJA0222),2002/07-2004/07,0.5万元。该项目荣获三峡大学科学技术三等奖(2005)。
(3) 参与:“线性规划与非线性规划内点算法”,该项目荣获三峡大学科学技术二等奖(2004)。
(4) 参与国家自然科学青年基金项目一项;湖北省教育厅重点项目二项。
学术论文
[1] Tingsong Du* (杜廷松), Taichun Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos, Solitons and Fractals, 2022, 156: 1–19. (SCI) [2] Yu Peng, Hao Fu, Tingsong Du* (杜廷松), Estimations of bounds on the multiplicative fractional integral inequalities having exponential kernels, Communications in Mathematics and Statistics, 2022, Accepted and in press, https://doi.org/10.1007/s40304-022-00285-8 (SCI) [3] Tingsong Du* (杜廷松), Chunyan Luo, Zhijie Cao, On the Bullen-type inequalities via generalized fractional integrals and their applications, Fractals-Complex Geometry, Patterns, and Scaling in Nature and Society, 2021, 29 (7): 1–20. (SCI) [4] Tingsong Du* (杜廷松), Muhammad Uzair Awan, Artion Kashuri, Shasha Zhao, Some -fractional extensions of the trapezium inequalities through generalized relative semi--preinvexity, Applicable Analysis, 2021, 100 (3): 642–662. (SCI) [5] Tingsong Du* (杜廷松), Chunyan Luo, Bo Yu, Certain quantum estimates on the parameterized integral inequalities and their applications, Journal of Mathematical Inequalities, 2021, 15 (1): 201–228. (SCI) [6] Chunyan Luo, Yuping Yu, Tingsong Du*(杜廷松), An improvement of Hölder integral inequality on fractal sets and some related Simpson-like inequalities, Fractals-Complex Geometry, Patterns, and Scaling in Nature and Society, 2021, 29 (5): 1–20. (SCI), (第一作者为研究生) [7] Zhengrong Yuan, Taichun Zhou, Qiang Zhang, Tingsong Du∗ (杜廷松), Certain parameterized inequalities arising from fractional integral operators with exponential kernels, Filomat, 2021, 35 (5): 1707–1724. (SCI) , (第一作者为研究生) [8] Jiagen Liao, Shanhe Wu, Tingsong Du* (杜廷松), The Sugeno integral with respect to -preinvex functions, Fuzzy Sets and Systems, 2020, 379: 102–114. (SCI) , (第一作者为研究生) [9] Chunyan Luo, Hao Wang, Tingsong Du*(杜廷松), Fejér–Hermite–Hadamard type inequalities involving generalized -convexity on fractal sets and their applications, Chaos, Solitons and Fractals, 2020, 131:1–13. (SCI) , (第一作者为研究生) [10] Tingsong Du*(杜廷松), Chunyan Luo, Zhengzheng Huang, Artion Kashuri, Fractional trapezium-like inequalities involving generalized relative semi--preinvex mappings on an -invex set, Ukrainian Mathematical Journal, 2020, 72 (12): 1886–1906. (SCI) [11] Gou Hu, Tingsong Du*(杜廷松), Fuxiang Liu, Certain new integral inequalities considering the generalized logarithmically –preinvexity, Maejo International Journal of Science and Technology, 2020, 14 (1), 93–108. (SCI) [12] Chunyan Luo, Tingsong Du*(杜廷松), Generalized Simpson type inequalities involving Riemann–Liouville fractional integrals and their applications, Filomat, 2020, 34 (3) : 751–760. (SCI) , (第一作者为研究生) [13] Hui Lei, Gou Hu, Jialu Nie, and Tingsong Du*(杜廷松), Generalized Simpson-type inequalities considering first derivatives through the -fractional integrals, IAENG International Journal of Applied Mathematics, 2020, 50 (3): 628-635. (EI), (第一作者为研究生) [14] Tingsong Du* (杜廷松), Hao Wang, Muhammad Adil Khan, Yao Zhang, Certain integral inequalities considering generalized -convexity on fractal sets and their applications, Fractals-Complex Geometry, Patterns, and Scaling in Nature and Society, 2019, 27 (7): 1–17. (SCI) [15] Tingsong Du* (杜廷松), Hao Wang, Muhammad Amer Latif, Yao Zhang, Estimation type results associated to -fractional integral inequalities with applications, Journal of King Saud University Science, 2019, 31 (4) : 1083–1088. (SCI) [16] Hui Lei, Tingsong Du*(杜廷松), Some new bounds related to Fejér–Hermite–Hadamard type inequality and their applications, ScienceAsia, 2019, 45 (4): 361–370. (SCI) , (第一作者为研究生) [17] Chunyan Luo, Tingsong Du* (杜廷松), Muhammad Uzair Awan, Marcela V. Mihai, On the k-fractional integral inequalities through the generalized -preinvexity, Journal of Nonlinear Functional Analysis, 2019 (2019), Article ID 2, pp. 1–18. (EI), (第一作者为研究生) [18] Tingsong Du* (杜廷松), Xianting Ke, Jiagen Liao, Yanjun Shen, DSLC-FOA : Improved fruit fly optimization algorithm for application to structural engineering design optimization problems, Applied Mathematical Modelling, 2018, 55:314–339. (SCI) [19] Yao Zhang, Tingsong Du* (杜廷松), Hao Wang, Some new -fractional integral inequalities containing multiple parameters via generalized -preinvexity,Italian Journal of Pure and Applied Mathematics, 2018, 40: 510–527. (EI), (第一作者为研究生) [20] Tingsong Du* (杜廷松), Yujiao Li, Zhiqiao Yang, A generalization of Simpson’s inequality via differentiable mapping using extended -convex functions, Applied Mathematics and Computation, 2017, 293: 358–369. (SCI) [21] Jiagen Liao, Tingsong Du*(杜廷松), Optimality conditions in sub- -convex programming, University Politehnica of Bucharest Scientific Bulletin, Series A: Applied Mathematics and Physics, 2017, 79(2):95–106. (SCI) , (第一作者为研究生) [22] Jiagen Liao, Tingsong Du*(杜廷松), Certain properties associated with B-preinvex fuzzy mappings,Italian Journal of Pure and Applied Mathematics, 2017, 38: 204–217. (EI), (第一作者为研究生) [23] Yichao Zhang, Tingsong Du*(杜廷松), Jiao Pan, On new inequalities of Fej´er-Hermite-Hadamard type for differentiable -preinvex mappings, ScienceAsia, 2017, 43 (4 ): 258–266. (SCI) [24] Jiagen Liao, Tingsong Du*(杜廷松), On some characterizations of sub---convex functions, Filomat,2016, 30 (14): 3885–3895. (SCI) , (第一作者为研究生) [25] Yujiao Li, Tingsong Du (杜廷松), Bo Yu, Some new integral inequalities of Hadamard-Simpson type for extended -preinvex functions, Italian Journal of Pure and Applied Mathematics, 2016, 36, 583–600. (EI), (第一作者为研究生)







