师资简介
当前位置:
-
首页
/
师资队伍
/
师资简介
/
核工程与核技术系
/
正文
冯虹瑛
职称:副教授
学历:研究生
毕业院校:中国科学技术大学
所在单位:理学院
学位:博士
学科:核科学与技术
电话:-
地址:L-1336
邮箱:tracyfhy2015@outlook.com
开设课程
本科生:核反应堆控制与保护,核反应堆安全分析,专业英语(核工程),python基础 研究生:辐射剂量学,辐射探测与测量
主持/参与的科研项目
1,国家自然科学基金(12305393)GPU加速MRI引导的质子实时自适应蒙卡鲁棒放疗计划的研究,2024.01-2026.12,主持,在研。
2,国家自然科学基金(11847131)托卡马克中撕裂模与快离子相互作用的数值模拟,2019.01-2019.12,主持,结题。
学术论文
1. Feng H, Shan J, Vargas CE, et al. Online Adaptive Proton Therapy Facilitated by Artificial Intelligence–Based Autosegmentation in Pencil Beam Scanning Proton Therapy. International Journal of Radiation Oncology*Biology*Physics. 2024/09/20/ 2024;doi:https://doi.org/10.1016/j.ijrobp.2024.09.032 2. Holmes J, Zhang L, Ding Y, et al. Benchmarking a Foundation Large Language Model on its Ability to Relabel Structure Names in Accordance With the American Association of Physicists in Medicine Task Group-263 Report. Practical Radiation Oncology. 2024/09/05/ 2024;doi:https://doi.org/10.1016/j.prro.2024.04.017 3. Holmes J, Feng H, Zhang L, Fix MK, Jiang SB, Liu W. Fast Monte Carlo dose calculation in proton therapy. Physics in Medicine & Biology. 2024/08/13 2024;69(17):17TR01. doi:10.1088/1361-6560/ad67a7 4. Feng H, Holmes JM, Vora SA, et al. Modelling small block aperture in an in-house developed GPU-accelerated Monte Carlo-based dose engine for pencil beam scanning proton therapy. Physics in Medicine & Biology. 2024/01/17 2024;69(3):035003. doi:10.1088/1361-6560/ad0b64 5. Zhang L, Liu Z, Zhang L, et al. Technical note: Generalizable and promptable artificial intelligence model to augment clinical delineation in radiation oncology. Medical Physics. 2024;51(3):2187-2199. doi:https://doi.org/10.1002/mp.16965 6. Liu W, Feng H, Taylor PA, et al. NRG Oncology and Particle Therapy Co-Operative Group Patterns of Practice Survey and Consensus Recommendations on Pencil-Beam Scanning Proton Stereotactic Body Radiation Therapy and Hypofractionated Radiation Therapy for Thoracic Malignancies. International Journal of Radiation Oncology*Biology*Physics. 2024/07/15/ 2024;119(4):1208-1221. doi:https://doi.org/10.1016/j.ijrobp.2024.01.216 7. Wang K, Sun S, Zhang W, et al. Verification of gyrokinetic particle simulations of neoclassical tearing modes in fusion plasmas. Plasma Physics and Controlled Fusion. 2023/08/29 2023;65(10):105005. doi:10.1088/1361-6587/aceb88 8. Ding Y, Feng H, Yang Y, et al. Deep-learning based fast and accurate 3D CT deformable image registration in lung cancer. Medical Physics. 2023;50(11):6864-6880. doi:https://doi.org/10.1002/mp.16548 9. Shan J, Feng H, Morales DH, et al. Virtual particle Monte Carlo: A new concept to avoid simulating secondary particles in proton therapy dose calculation. Medical Physics. 2022;49(10):6666-6683. doi:https://doi.org/10.1002/mp.15913 10. Feng H, Shan J, Anderson JD, et al. Per-voxel constraints to minimize hot spots in linear energy transfer-guided robust optimization for base of skull head and neck cancer patients in IMPT. Medical Physics. 2022;49(1):632-647. doi:https://doi.org/10.1002/mp.15384 11. Feng H, Patel SH, Wong WW, et al. GPU-accelerated Monte Carlo-based online adaptive proton therapy: A feasibility study. Medical Physics. 2022;49(6):3550-3563. doi:https://doi.org/10.1002/mp.15678 12. Feng H, Shan J, Ashman JB, et al. Technical Note: 4D robust optimization in small spot intensity-modulated proton therapy (IMPT) for distal esophageal carcinoma. Medical Physics. 2021;48(8):4636-4647. doi:https://doi.org/10.1002/mp.15003 13. 张彬航, 张聪, 毕彦钊, et al. 基于最佳一致逼近多项式的燃耗计算方法研究. 原子能科学技术. 2021;55(3):454-463. doi:10.7538/yzk.2020.youxian.0128 14. Feng H, Sio TT, Rule WG, et al. Beam angle comparison for distal esophageal carcinoma patients treated with intensity-modulated proton therapy. Journal of Applied Clinical Medical Physics. 2020;21(11):141-152. doi:https://doi.org/10.1002/acm2.13049 15. 张彬航, 杨森权, 陈云龙, et al. 基于高阶CRAM的燃耗程序开发与验证. 原子能科学技术. 2020;54(11):2137-2144. doi:10.7538/yzk.2019.youxian.0913 16. Shi H, Zhang W, Feng H, et al. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. IV. Drift-tearing mode. Physics of Plasmas. 2019;26(9)doi:10.1063/1.5116332 17. Hu W, Feng H-Y, Zhang W-L. Comparison of ITG and TEM Microturbulence in DIII–D Tokamak*. Chinese Physics Letters. 2019/08/01 2019;36(8):085201. doi:10.1088/0256-307X/36/8/085201 18. Hu W, Feng H-Y, Dong C. Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas*. Chinese Physics Letters. 2018/10/01 2018;35(10):105201. doi:10.1088/0256-307X/35/10/105201 19. Feng H, Zhang W, Lin Z, et al. Development of Finite Element Field Solver in Gyrokinetic Toroidal Code. Communications in Computational Physics. 2018;24:Medium: ED; Size: p. 655-671. doi:10.4208/cicp.OA-2017-0139 20. Feng H, Zhang W, Dong C, Cao J, Li D. Verification of linear resistive tearing instability with gyrokinetic particle code VirtEx. Physics of Plasmas. 2017;24(10)doi:10.1063/1.4999166 21. 杨周, 顿志凌, 胡隆谦, et al. ZnO纳米材料改性油漆涂层的制备及其浸润性的研究. 功能材料. 2011-01-20 2011;42(01):13-0.







